《数学广角──》教学设计
作为一位杰出的老师,可能需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么优秀的教学设计是什么样的呢?下面是小编为大家整理的《数学广角──》教学设计,仅供参考,希望能够帮助到大家。
《数学广角──》教学设计1
教学目标:
1、通过观察、讨论、操作等活动,找出最简单的数的排列的基本方法。
2、使学生经历探索简单事物排列规律的过程。
3、培养学生有顺序地、全面地思考问题的意识,感受数学与生活的紧密联系。
教学重点:自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活的问题。
教学难点:怎样排列可以不重复、不遗漏。理解简单事物搭配中的有序、无序的不同。
教学准备:数字卡片,表格,彩笔,课件等。
教学过程:
一、引入
师:今天咱们班来了这么多的客人,他们都听说咱们班的同学特别聪明,我也很高兴,所以想带你们去数学广角玩一玩,你们想去吗?
生:想(出示课件“数学广角”)
二、新授
1、师:想要进去必须先解锁(密码问题出示课件)
提示:锁的密码是由1、2两个数字组成的其中的一个两位数
生:1221(教师板书)
门锁打开进入下一关
2、师:顺利打开第一把锁后,我们再来看看还有一个超级密码锁,密码是由1、2、3三个数中的.两个数字组成的两位(小组讨论,自己动手摆一摆,写一写)?
提问学生讨论的结果,板书(1)122313323121
(2)122123321331
提问哪组方法比较好,怎样才能即不丢不漏也不重复的写出所有两位数?
生:先拿出数字1和2,组成12和21……观察6个数字找出规律
师小结:组成的两位数和数字的顺序有关
3.我们一起进入北城南城(出示课件)用红绿蓝3种颜色给两个城区涂上不同的颜色,一共有多少种涂色方法?
(1)先讨论交流再涂一涂
(2)展示学生作品
(3)教师小结:用颜色涂出的城区与颜色的顺序有关
4.进入数字乐园(课件展示)
579三个数字,选任意2个求和,得数有几种可能?
(1)小组讨论
(2)填写答题卡
(3)集体交流
(4)教师小结:求两个数的和与数字的顺序无关
5.师:刚刚我们一起闯过了很多关,数学广角里的小朋友都很着急想见我们,朋友见面要握握手,我们3个人为一组,互相握握手,讨论一下一共可以握几次手。(出示握手图)
(1)小组讨论,亲自实践握手
(2)个别学生演示握手
(3)教师小结,3个人每2个人握一次手,可以握3次
6.总结:这次去数学广角你觉得有趣吗?你都学到了什么?
7.布置作业:找自己的2件上衣和2件裤子,搭配一下,看看有几种穿法?下节课我们再一起学习!
《数学广角──》教学设计2
教材说明
“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生的抽象、概括能力。《标准》中指出,第二学段要让学生“进一步体会数在日常生活中的作用,会运用数表示事物,并能进行交流”。在日常生活中,数有着非常广泛的应用,在第一学段学生已经有了初步体会,特别是在一年级上册认数的时候,教材在“生活中的数”版块中就已经出现了像邮政编码、门牌号、车牌号这样的数在生活中的应用实例。数不仅可以用来表示数量和顺序,还可以用来编码,本单元就是在学生的生活经验和已有知识的基础上,进一步体会数字编码在日常生活中的应用,并通过实践活动进行简单的数字编码,培养学生的数学思维能力。
数字编码和我们的生活紧密相关,比如邮政编码、身份证号码、电话号码等,在这些号码中都蕴含着数字编码的思想,同时也为我们的生活提供了很多便利。运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。
在这一单元我们主要是通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。教材首先从老师点名的情境引入,说明我们可以用数字编码来区分班上的每个学生。接下来,例1和例2通过邮政编码和身份证号码等生活实例让学生体会数字编码在生活中的应用,初步了解邮政编码的结构与含义,了解身份证号码中蕴含的一些简单信息和编码的含义,探索数字编码的简单方法。例3和例4是在此基础上,让学生通过两个实践活动来运用数字或字母进行编码,加深对数字编码思想的理解。例3是让学生给学校的每一个学生编一个学号,例4是让学生给班里或学校图书角的书籍编一个书号,和例3相比,更复杂一些,是用符号和数字的组合进行编码,这种编码在生活中也是处处可见,比如汽车的车牌号、火车的车次、飞机的航班号以及商品的型号等,从而体会到数学应用的广泛性,提高学生学习数学的兴趣和积极性。
教学建议
1.恰当把握教学要求。
数字编码是一种抽象的数学思想方法,在这里只是让学生通过日常生活中的一些实例,初步体会数字编码在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,学会运用数进行编码,初步培养学生的抽象、概括能力。学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,并不要求学生掌握编码中每个数字的信息和含义。另外学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。
2.本单元内容可用3课时进行教学。
1.情境图。
教材首先由学生非常熟悉的老师点名的生活情境来引入,然后小精灵提出问题:“如果不叫姓名,还能怎样来区分班上的学生呢?”从而引起学生的讨论:还可以用编号的形式给每个学生编个号码。接下来,教材说明数不仅可以用来表示数量和顺序,还可以用来编码。
教学时,教师可以创设这样的情境,让学生探讨用编号的方法来区分班上的学生。这样引出数不仅可以用来表示数量和顺序,还可以用来编码。这部分内容也可以结合后面的例1来教学,教师课前可以让学生先收集一些由数字组成的号码,如车牌号、邮政编码、电话号码等,然后在班上交流和汇报,教师在学生汇报的基础上,通过多媒体课件再来展示生活中经常见到的这些数字编码现象,比如邮政编码、身份证号码、电话号码等,通过这些生活中广泛存在、学生熟悉的素材来引出数字编码,使数字编码这个看似抽象的问题变得直观和有趣,这样也更能激发学生的学习兴趣,并且当老师提出学生能发现这些数字编码中的“秘密”时,也就更加激发了学生的探索欲望。
2.例1。
例1是通过了解邮政编码的结构和含义来初步体会数字编码的方法,同时通过邮政编码在信件传递中的功能初步体会数字编码在我们日常生活中的作用。教材首先由编辑室经常收到全国各地读者的来信这个生活中的情境来引出,让学生思考:你知道这些信件是怎样传递的呢?接下来,教材用一组连续的示意图展示了信件传递的过程:先是一个小女孩把信件投入邮筒中,然后邮局(所)把收集起来的信件通过机器分拣,机器能根据每封信上面的邮政编码进行分类,再把信件传递到收信人所在地的邮局,最后由邮递员根据具体的地址来投递信件。了解了信件传递的过程后,小精灵给同学们提出了问题:你知道本地的邮政编码吗?你想知道这些数字是怎样编排的吗?引导学生来探索邮政编码中数字编排的结构和含义。
邮政编码是代表投送邮件的邮局的一种专用代号,也是这个局(所)投送范围内的居民与单位的通信代号。教材这里呈现了一个标准信封的正面,并向同学们介绍了邮政编码的结构:邮政编码由6位阿拉伯数字组成,如448268。它的'前两位数表示省、自治区、直辖市,如44表示湖北省;第三位数表示邮区代号,如448表示湖北省荆门邮区;第四位数表示县(市)的编号,如4482代表湖北省荆门市沙洋县邮局;最后两位代表邮件投递局(所),所以448268表示的就是——湖北省荆门市沙洋县五里邮电支局的投递局。同样,邮政编码100009表示的是——北京市东城区地安门邮电局的投递局。了解了邮政编码的组成,接下来介绍邮政编码作为我们国家的邮政代号在信件传递的过程中所起的作用。教材通过小精灵揭示:有了邮政编码,机器就能对信件进行分拣,这样就大大提高了信件传递的速度,从而让学生体会数字编码在生活中的重要作用。
教学时,教师要充分调动学生学习的积极性,可以结合例1后面的“做一做”,让学生利用课外时间调查、收集一些邮政编码,如学校所在地的邮政编码、父母单位所在地的邮政编码、爷爷奶奶住址所在地的邮政编码等。并要求学生设法了解邮政编码的结构与含义,如向邮局工作人员或邮递员咨询、查阅邮政编码书籍等。在学生汇报了收集的邮政编码后,老师提出问题:你们知道这些信件是怎样传递的吗?让学生在调查的基础上展开讨论,等学生发表完意见后,老师再进行补充或总结。这里可以利用教材的示意图来介绍,也可以设计多媒体课件或动画动态地展现信件传递的流程。
学生了解信件的传递过程后,老师接着提出问题:我们收集了这么多邮政编码,你们发现它们有什么相同的地方?机器怎么能根据邮政编码的数字进行分拣呢?这些数字又是怎样编排的呢?让学生先通过观察、比较找出收集来的邮政编码的相同点:同一个省、市的邮政编码前面有几位是相同的。在此基础上,再让学生根据查阅的资料或是调查的结果来讨论邮政编码的数字编排的结构和含义,如果大部分学生课前已经了解了邮政编码的组成,老师可以让学生结合自己手中的一个邮政编码来进行说明,比如学校的邮政编码的组成。如果学生有困难,老师可以在学生交流汇报自己的看法后,结合教材给出的邮政编码的结构图具体说明它的组成,也就是每个数字代表的含义。然后再让学生结合某个邮政编码给出它的组成,在小组中相互说一说。
如果学生课前没有调查,可以先让学生在小组中讨论,说说自己的猜想,然后老师再在学生猜想的基础上说明邮政编码的结构和组成(可配合多媒体课件),最后再结合邮政编码的结构图具体说明。了解它的组成后,再让学生试着就某个具体的邮政编码给出具体的说明,比如结合例1下面的“做一做”,再让学生说一说学校的邮政编码是怎样组成的。
了解了邮政编码的组成后,让学生思考一下邮政编码在信件传递中所起的作用。可以让学生先互相交流讨论一下,在学生讨论的基础上再进行总结。
《数学广角──》教学设计3
(一)知识与技能
1、在具体情境中,让学生感受集合的思想,亲历集合圈的产生过程。
2、让学生借助直观图理解集合圈中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、思考、交流等活动,让学生在合作学习中感知集合圈的形成过程,体会集合圈的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成善于观察、勤于思考的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。教学重点:
让学生感知集合的思想,了解集合圈的产生过程,并能初步用集合的思想解决简单的实际问题。教学难点:
理解集合圈的意义,会解决简单的重复问题。教学过程:
一、问题导入,揭示课题
1、提出问题:
脑筋急转弯的游戏(出示情景图:堂堂网的导入环节)师:对面走来二个妈妈,二个女儿,一共有几人?生:4人或3人。(答案不一)
师:可咱一数,
1、3,咦,只有3人,怎么回事?生:……
2、学生思考,回答想法
(课件出示)中间这个人是小女孩的妈妈,外婆又是妈妈的妈妈。二个女儿呢?小女孩是妈妈的女儿,妈妈是外婆的女儿。
提问:你发现了什么?教师引导学生突出:(1)“重复”一词;
(2)能用“既……又……”来表达;
(3)师生小结,得出:中间这个人既是妈妈,又是女儿,她的身份重复了。
3、揭示课题:
生活中像这样重复的现象有很多,今天我们就一起走进数学广角,来研究有趣的重复现象。(板书课题:数学广角——集合)【设计意图】上课伊始,我结合学生的兴趣爱好,巧妙利用堂堂网的导入环节及课件创设新颖有趣的导课情境,设置了一个脑筋急转弯的问题。既是生活中的问题又是数学中的重复问题,激发学生的认知兴趣,活跃课堂气氛,调动积极情绪和探究欲望,使学生积极主动地进入学习状态,也为下一环节的教学作好铺垫。
二、创设情景,探究新知
1、巧妙设疑,直观感悟,初步感知重复现象(1)情境引入(课件出示统计表)
1下面是三(4)班喜欢跳绳、踢毽的学生名单。
喜欢跳绳李子瑄蔡丹向汇成
喜欢踢毽刘亦麒田思源李子瑄何倩倩
(2)了解信息,提出问题
喜欢跳绳的有几人?喜欢踢毽的有几人?老师一共调查了多少名同学呢?让学生尝试回答出总人数。(3)游戏:引发认知冲突
喜欢跳绳、踢毽比赛的学生分别站在红、蓝两个呼啦圈里。问题:仔细观察统计表,你有什么发现?
让学生根据自己的理解分析,发现有两项运动都喜欢的同学,从而得出“重复”的意思。引发问题矛盾冲突:当有同学既喜欢跳绳又喜欢踢毽时怎么站?学生想办法解决。(把红圈和蓝圈同时套住李子瑄)师:为什么你们要把红圈和蓝圈同时套住李子瑄?生:……
【设计意图】根据学生熟悉情境引入,通过具体情况引发学生矛盾冲突,提出问题,“当有同学既喜欢跳绳又喜欢踢毽时怎么站?”,找准教学的起点,调动学生探索的积极性,也让学生初识重复问题的基本含义。
2、逐步整理出简洁明了的直观图(韦恩图)。(1)引入韦恩图。
师:李子宣到这里一站,就这个位置,她站出了接下来值得我们去研究的很多数学知识。我们可不可以把他们的位置关系用什么方法表示出来?你们猜一猜,现在这二个圈,会是什么样子的?伸出你们的小手比划比划,这二个圈,是这样吗?现在我们把这二个圈抽起来,看看你们的猜想,对不对。
师:哇,好能干的孩子,和你们的猜想是一样的。
师:我把你们创造出来的二个圈搬到黑板上来,用一个圈表示喜欢跳绳的学生,再用一个圈表示喜欢踢毽的学生。(边说边用红笔和蓝笔在黑板上画了两个交叉的椭圆)中间的部分是表示喜欢什么意思?
生:表示既喜欢跳绳又喜欢踢毽的。
师:我想用三角形把他们在圈中表示出来,你们能在圈中找到她们的位置吗?师生共同合作整理出集合圈。(课件出示)
【设计意图】此环节将学生的姓名用三角形代替,向学生渗透符号思想,也为进一步优化韦恩图(直接用数字表示)起到了重要的桥梁作用。
(2)介绍韦恩,拓宽视野
课件出示:你们知道吗,在一百多年前,英国有一个伟大的数学家,他叫韦恩。他是世界上第一个用这样的图形来表示集合的,他的这个发明为集合的研究带来了极大的方便,人们为了纪念他,就把他的名字用来命名这种图,所以,集合圈也叫韦恩图,(板书:韦恩图)我们班的同学真了不起,和这个数学家的想法是一样的,相信你们将来也和数学家韦恩一样有属于自己的.创造。
【设计意图】让学生相信我们每个人都可以有自己的创造,从而激发学生强烈的创造意识。
(3)小游戏:看谁的反应最快
课件演示各部分,让学生根据涂色区域用准确的语言正确描述各部分的意义。生:红色的圆圈部分表示喜欢跳绳的学生。生:蓝色的月牙部分表示只喜欢踢毽的学生。……
【设计意图】学生通过合作、思考、交流等活动,以及形象生动的动画亲历集合圈的形成过程,充分发掘学生的创造潜能,让学生大胆地用自己的方式解决实际问题,为学生提供了自主探究的空间和平台,让每个学生都参与其中,从中获得成功的学习体验和感悟。
3、观察韦恩图,算法探究。
(1)提出问题:老师一共调查了几人呢?你能不能根据韦恩图来解决?
(2)学生尝试解决问题,并交流分享自己的解题方法。(鼓励学生用多种方法解决)预设:可能会出现:
3+4-1=6(人)或2+3+1=6(人)或3+3=6(人)或2+4=6(人)
【设计意图】让学生通过自身的观察、理解,尝试用多种方法来解决问题,体会胜利的喜悦。(3)引导学生理解各算式的意义
课件出示集合圈,指导学生观察直观图,理解各算式中每个数字表示的意义。尤其是算式3+4-1=6(人)中,引导学生弄明白为什么要减1。
(4)教师小结。刚才我们用不同的想法却得到了相同的结果,我们只要弄明白这个圈里各部分表示的意思,就可以灵活列式计算解决问题,但无论怎样列式,重复出现的人数只能算1次。
【设计意图】集合问题比较抽象,看不见,摸不着,即使老师反复讲,学生也难真正理解。本环节中,学生在探究解法时,我出示课件,让学生借助直观图,理解韦恩图的意义,并利用集合的思想方法解决简单的实际问题,在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。同时使教学难点分解,化难为易,缩短了学生从形象思维到抽象思维的发展,从而突破教学重难点。
4、比较图与表格,突出韦恩图的优点。
师:平时我们是用表格和文字的方式来呈现的,今天我们学习了韦恩图,比较一下,你觉得哪
3种方式更简洁?
生:韦恩图
师:对,用韦恩图不仅能清晰的表示出各部分之间的关系,还便于我们计算。师:你认为在什么样情况下使用韦恩图来解决问题呢?生:有重复关系的。
师:怎样才能在表格中清楚地看出哪些同学重复了呢?
师:把重复的名字用线条连起来,通过连线,我们就可以清楚地看到哪些同学重复了。【设计意图】让学生感悟集合圈能直观地看出各部分之间的关系,尤其是重复的部分看得很清楚。
三、练习巩固,内化新知
师:通过刚才的学习,我发现同学们不仅会解决问题,还能讲清思路和道理,已经具备了学好数学的很重要的品质。现在,让我们带着这个集合圈的知识,带着这个数学家的气质,一起走进生活去解决一些实际问题好吗?
课件出示:
1、引导学生看图理解各部分的意义,弄清题目信息。
2、学生用自己喜欢的方法独立完成。
3、展示优秀作业,并请学生讲清各种方法的理由。
4、教育学生养成良好的进餐习惯,做到不偏食,不挑食。
【设计意图】让学生感受到生活中处处有数学,数学和我们的生活密切联系。同时,将思想教育、养成教育与知识传授融为一体,“随风潜入,育人无声,让学生在自然轻松的氛围中接受思想教育,养成良好的习惯。
四、实践运用,拓展提高
课件出示思考题:三(4)班参加美术特长班的有4人,参加舞蹈特长班的有5人,参加美术与舞蹈特长班的总人数可能是多少人?最少是多少人?
1、小组合作讨论:
2、交流汇报:参加美术班和舞蹈班的同学可能会重复,也可能没有重复。生:我觉得有可能参加美术班的4人与参加舞蹈班的5人不重复,共9人。生:有可能有一个同学既参加了美术班又参加了舞蹈班,这样就只有8人。
4根据学生回答,课件动态演示从不重复,依次重复1人到4人参加两个班学习的几种情况。
3、全班分析,得出:
师:根据刚才的演示,你能概括说说,参加美术班与舞蹈班的总人数可能是多少人?最少是多少人?
参加美术班和舞蹈班的同学有可能是9人—5人,最多是9人,没有人重复;最少有5人,其中4人重复,即这4人二个班都参加了。
【设计意图】数学学习应源于生活,用于生活,同时还要高于生活,此环节借助多媒体的功能,设计了一个开放性与实践性相结合的素材练习,既链接了所学知识资源,又为学生搭建了开放与拓展的平台,在巩固所学知识的同时,又用活了知识,实现了提升。
五、联系实际,总结升华
师:这节课,你有什么收获?还有什么问题和想法?学生畅所欲言
师:今天我们认识了集合圈,学会了用韦恩图来解决生活中有重复关系的数学问题。我从你们的身上学到了在探究知识时你们机灵的活动,在总结经验时你们静心的思考,在解决难题时你们灵活的运用,这些都是学习数学的好方法,希望你们在学习上能多观察、勤思考,探寻更多的数学奥秘。
【设计意图】在学生回顾本节课知识的同时,给学生质疑和表达的机会,逐渐使其形成反思的意识。激发学生的学习欲望,使知识的学习引申到课外。
《数学广角──》教学设计4
教学内容:
义务教育课程标准实验教科书三年级数学下册第九单元《数学广角》第109页。
学习目标:
知识与技能方面:初步体会等量代换的数学思想方法;初步运用其思想方法解决一些简单的实际问题或数学问题。
过程与方法方面:通过观察、猜测、操作、计算、验证等活动,亲历学习过程,从而体验学习的愉悦。
情感态度价值观方面:培养学生有序、全面地思考问题的意识和合作学习的习惯。
教学重难点:
利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想,为以后学习简单的代数知识做准备。
教学流程:
一、激趣导入明确主题
1、同学们都听说过“曹冲称象”的故事吧!曹冲是怎么称出大象的重量的呢?让我们一起来回顾这一过程。
2、曹冲是把大象的重量转换成了什么的重量呢?【他是把大象的重量转换成了与它重量相等的石头的重量】因为当时没有那么大的称能直接称出大象的重量,所以曹冲就用石头的重量代换了大象的重量,称出了石头的重量也就知道了大象的重量。
3、同学们,你们大概还不知道吧,曹冲确实非常了不起,他运用了一种重要的数学思考方法——等量代换。【板书:数学广角——等量代换】这节课我们就来学习如何用“等量代换”的方法解决问题。
二、引导探究发现规律
1、今天这节课,老师给同学们带来了神秘的礼物。猜猜,什么样的孩子能够得到它们?全班?个大组,哪组的成员在参与过程中积极主动,认真动脑思考,遵章守纪,老师就奖励这个组一个青苹果,三个青苹果可以换一个红苹果,两个红苹果可以换取一份神秘的礼物。看看哪个组能得到礼物。
有信心吗?老师相信你们是最棒的。
2、大家请看这是什么?【出示天平、砝码】
它有什么作用?【天平可以称出物体的重量】
我们来体会一下,用天平量物体的轻重时,天平不同的状态会告诉我们哪些信息?这是砝码,砝码都是有重量的,所以用它可以测量出物体有多重。
看看,现在天平是什么样的状态?【向右边倾斜】天平向右边倾斜,在告诉我们什么呢?【右边重些】
现在天平是什么样的状态?【向左边倾斜】向左边倾斜,这是天平在悄悄的告诉我们什么?【左边重些】
现在呢?【天平平衡】天平平衡的时候,我们可以知道两边物体的重量有什么关系呢?你能完成这个结论吗?【当天平处于平衡状态的时候,左右两边的物体的重量“相等”】
两个重量相等的物体,我们可以用一个词来概括。谁知道?
看来这个问题,得需要老师来帮忙了。可得认真听啊,一般人我不告诉他。【等量】
2、认识了天平,又理解了等量这个词,让我们带着发现的眼睛,到市场看一看。请同学们仔细观察这幅图,看看,从图中你知道了什么?【板书:一个西瓜的重量=4千克,四个苹果的重量=1千克】
请同学们想一想:一个西瓜的重量=?个苹果的重量。
请同学们小组合作,共同解决这个问题,大家可以动用手中的学具摆一摆!我要请同学到前面来讲述自己的思考过程,看谁能把自己的想法清楚明白的表达出来。
【一个西瓜4千克(等于4个砝码),1千克(1个砝码)等于4个苹果,我们用替换的方法,把一个1千克(1个砝码)换成4个苹果。西瓜重4千克(4个砝码),总共要换4次,因此是16个】
【一个西瓜和4千克砝码同样重,所以4千克砝码就有4个4,所以有4×4=16个】
【依学生的回答,一边摆学具,利用直观的'方式帮助学生理解,板书:1个西瓜的重量=16个苹果的重量】
3、小结:当两个物体的重量都等于同一个物体时,他们的重量也是相等的,可以进行互相替换。
4、在很久以前,早到货币都没有的时候,那时人们要想得到自己需要的东西,常常采用以物换物的方法。
我们来看看,他们是怎样换取家畜的。【出示图片】
说一说,你从图上看到了哪些信息?【2只绵羊的重量=1头猪的重量;4头猪的重量=1头牛的重量】
有一位农夫想用自家的两头牛到集市上换绵羊,能换回几只绵羊?
大家能解决这个问题吗?4人小组内讨论,解决问题。
根据2头绵羊的重量=1头猪的重量可以求出4头猪的重量=8头绵羊的重量,再根据4头猪的重量=1头牛的重量可以求出8头猪的重量=2头牛的重量,所以16只绵羊的重量=2头牛的重量。【要求2头牛和多少头羊同样重,首先要知道2头牛和多少头猪同样重,再利用猪和羊的关系进行替换(计算),最后求出结果。】
【可以让学生从多方面去考虑不同的方法,板书】
同学们想一想,古人在生活中想到了用等量代换的方法换去自己需要的物品,在我们现代生活中还有哪些事情用到了等量代换的知识?【花钱买东西、促销集卡换礼品】
三、回归生活,实际运用
1、讲了这么多,老师的肚子都有些饿了,我们去吃麦当劳好吗?
麦当劳叔叔告诉我们:1个汉堡可以换2个鸡翅,1个鸡翅可以换3个冰淇凌,那么1个汉堡可以换几个冰淇凌?
【1×2×3=6个】
【1个汉堡和6个冰淇淋都可以换2个鸡翅,所以1个汉堡可以换2个冰淇淋】
2、这时,麦当劳叔叔又送来了可乐。你们看,麦当劳叔叔又带来了什么信息呢?1瓶大可乐可以换2瓶中可乐,1瓶中可乐可以倒满3杯。1瓶大可乐可以倒满几杯呢,你是怎么想的?
【1瓶大可乐和6杯可乐都可以换2瓶中可乐,所以1瓶大可乐可以换6杯可乐】
3、在麦当劳里喝了大半天,同学们手中有了不少可乐瓶了吧。这些可乐瓶怎么处理呢?
好消息:回收可乐瓶,每5只空可乐瓶可以换1瓶可乐。
现在咱们班废品回收袋里有50个空可乐瓶,如果拿这些空瓶去换可乐,请你算一算,只换一次可以换到多少瓶可乐?
【可以换50÷5×1=10瓶】
四、拓展延伸,升华主题
1、我们看看小兔子在做什么?小白兔和小灰兔正在换萝卜呢!他们换了好几次,总也没换对,你们能帮助他吗?
6根胡萝卜换2个大萝卜,9个大萝卜换3棵大白菜。6棵大白菜换多少根胡萝卜?【练习二十四,第3题】
【6棵大白菜可以换18个大萝卜,18个大萝卜可以换54根胡萝卜】
引导学生读题、分析关系,并尝试抽象地推导(计算)一下。如果学生抽象地想象有困难,可以让学生先用学具摆一摆。
2、看!小鸡、小鸭、小鹅也在玩跷跷板,你们知道谁重一些吗?【练习二十四,第4题】
提示:直接比较1只鸡和1只鸭谁重一些比较困难,可以转化为2只鸡和2只鸭,或4只鸡和4只鸭的比较。
《数学广角──》教学设计5
教材分析
“数学广角——重复问题”是人教版数学三年级下册新增设的一个内容。“重复问题”是日常生活中应用比较广泛的数学知识。教材主要是让学生通过实际生活中容易理解的题材,初步体会集合思想方法。集合是一种比较系统、抽象的数学思想方法。而教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,这与实际参加这两个课外小组的总人数不相符合,从而使学生学会利用集合图来解决这个问题。在此基础上,掌握解决此类问题的计算方法及含义。
学情分析
学情分析:学生从一年级学习数学开始,就已经在运用集合的思想方法了。如学习数数时,把1个人、2朵花等用一个封闭的曲线圈起来表示。又如学过的分类思想实际上就是集合理论的基础。但这些只是单独的一个个的集合圈,而本节课所用的集合圈含有重复的部分,学生从没有见过。因此,教师一定要设计好探究情景,让学生经历从独立到交叉重复的过程,分散难度,使学生逐步理解图示中的不同位置所表示的不同意义,并能根据图示灵活解题。因此,本节课我没有直接利用教材中的例题进行教学,而是针对三年级学生的认知水平,在教学中,侧重亲自去感知、体验韦恩图的优势,对比中提升思维,进而明确本节课的目标是借助直观的韦恩图,利用集合的思想方法解决重复问题。
教学目标
1.知识与能力:使学生借助贴近生活的情境,利用集合的思想方法,引导学生学会用韦恩图解决单的实际问题,并能用数学语言进行描述。让学生掌握解决重复问题的一些基本策略,体验解决问题的多样性。通过丰富、直观的'游戏活动,发展形象思维,提升抽象思维能力。
2.过程与方法:从学生熟悉的生活事例引入,既可以激发学生的学习兴趣,产生亲切感;也可以使学生认识到现实生活中蕴含丰富的数学问题,体验数学的应用价值,进一步感受数学与生活的联系。
3.情感态度和价值:让学生在主动参加数学活动过程中,获得成功的体验,提高学生学习数学的兴趣与能力。
教学重点和难点
1.理解集合图的各部分意义。
2.掌握解决重复问题的一些基本策略。
《数学广角──》教学设计6
教学设计
教学内容:
《九年义务教育课程标准实验教科书数学》(人教版)二年级上册,8单元“数学广角”p97例1及p97的“做一做”练习二十四第3题。
教学内容分析:
搭配就是排列与组合,这样的思想方法不仅应用广泛,而且是以后学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。
学情分析:
二年级学生学习兴趣浓厚,喜欢思考,具有简单的分析、判断、推理能力。但是学生合作意识不强,胆子也较小,思考问题不够全面,有序性不强。本节内容,学生才开始接触,但在学习生活中,经常遇到,对学生来说,并不陌生,启发学生通过操作、观察、归纳以及合作交流,从而掌握搭配的方法。
教学目标:
一、知识与能力目标:
1.使学生通过观察、猜测、实验等活动,找出简单事物的排列规律。
2.培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。3.引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。
二、情感态度目标:
1.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣
2.使学生在数学活动中养成与人合作的良好习惯。教学重点:
自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活的问题。教学难点:怎样排列可以不重复、不遗漏。理解简单事物搭配中的有序、无序的不同。
教具准备:数字卡片、给学生准备数位表格、课件等。学具准备:数字卡片、彩笔。教法学法选择:
1、联系生活实际解决身边问题,体验学数学、用数学的乐趣。
2、在具体的生活情景中让学生亲身经历发现问题,提出问题、解决问题的过程,体验探索成功的快乐。
3、通过动手操作、独立思考和开展小组合作交流活动,完善自己的想法,构建自己独特的学习方法。
4、通过灵活、有趣的练习,提高学生解决问题的能力,同时寻求解决问题的多种
办法。
教学过程:
一、故事引入,学习排列
1、同学们,你们喜欢看动画片《喜羊羊与灰太狼》吗?(喜欢)灰太狼喜欢做什么?(抓羊)
这一天,灰太狼抓走了美羊羊,把它关在了狼堡里,灰太狼为了阻止喜羊羊救美羊羊,就篡改了羊村大门的密码,以及为自己的狼堡大门设定了一个超级密码。喜羊羊为了救美羊羊,必须要过两道大门,提示:要想闯关成功,必须了解一个知识——搭配,(板书:搭配)小朋友,你们能帮助喜羊羊吗?
请跟喜羊羊一起进入第一关。
2、进入第一关:大门的密码是由1和2组成的两位数。
师:你能帮喜羊羊解决吗?(小组内交流想法。)
生:12,21。
师:同学们将1和2交换位置组成12和21两位数,那密码到底是哪个呢?提示:10和20之间的一个数。
生:12。
师:你们真聪明,顺利进入下一关。
3、看,超级密码在等着他去破解,写着什么?
密码是由1、2、3其中的两个数组成的两位数
师:由数字1、2、3其中的两个数组成的两位数有哪几种可能呢?
老师给每个小组准备了一个资料袋,三人合作,有两个人思考摆出数字,另一个人写一写。拿出里面的表格和数字,开始吧。写的时候有没有什么方法才能不会重复,不会遗漏。
师找具有代表性的写法,在展示台上出示:如有学生遗漏的,帮助补上。
①先确定十位,再将个位变动。12、13、21、23、31、32
②有顺序的从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数。12、21、23、32、13、31③先确定个位,再将十位变动。21、31、12、32、13、23师:超级密码现在有六种可能,到底是那个呢?提示:十位和个位相加是5,并且个位是2揭晓答案:32。
二、实践操作,感知组合。
大门打开了,老师真为喜羊羊和美羊羊开心,老师更为小朋友开心,因为小朋友用你们聪明的头脑帮喜羊羊闯过一道又一道的难关。老师祝贺你们(教师不自主的一边走一边伸手和同学握手)。
师:我俩握了几次?(1次)
师:我和他握,他和我握,每2人握一次手,3人共握几次手?3人小组合作。指一小组上台握手,集体交流次数。(谁和谁握?握了几次?)
三、区分排列和组合
师:数字1、2、3是3个数,小朋友握手也是3个人,为什么1、2、3能摆出6个数,而握手只能握3次呢?
师引导:组成的两位数是有序的,比如,1和2能写成12和21。而握手你和他握他和你握是一回事,没有顺序的。
四、应用拓展,深化探究。
师:美羊羊非常感激喜羊羊,从狼堡里救出了自己。她带喜羊羊到“娱乐园”玩游戏,你们想玩吗?
游戏1:搭配衣服,这四件衣服有几种不同的穿法呢?
师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?
生1:一件上衣可以配两条不同的裤子,这样有2种,另一件上衣又可以配两条不同的裤子,又有两种,这样一共有4种。
生2:我是1号和3号,1号和4号,2号和3号,2号和4号。
师:书上没序号你也学会给它们编号了,真了不起!刚才这位小朋友从衣服入手,有4种不同的搭配方法,你还有其他方法吗?
生:可以从裤子连,每条裤子连两件上衣。也有4种搭配方法。
游戏2:用红、黄和蓝3种颜色给地图上的两个城区图上不同的颜色,一共有多少种涂色方法?
小组合作完成。同时有一组的同学在黑板上演示。
五、总结延伸,畅谈感受
师:数学广角好玩吗,有趣吗,你都看到了什么?有什么收获吗?(生:真好玩,很有趣,学的很轻松。)
师:原来生活中有这么多数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题,掌握了这些知识,我们就可以把生活装点的更加美丽!
教学反思:
排列的思想方法在生活中有广泛的`应用,同时也是发展学生抽象能力和逻辑思维能力的有益载体。我的这节课把例题、“做一做”和练习等有关排列知识有机合,以“解救美羊羊”为经线,以“地图涂色、摆数字、拍合影、握手”为纬线,构成情境串,形成了一个完整的数学故事链,将排列问题趣味化。通过观察、猜测、操作、交流等活动,让学生经历了数学思维的训练。学生逐步形成了有顺序、全面思考问题的意识,同时培养了他们探索数学问题的兴趣与欲望。
在整节课的时间内,同学们都表现一定的兴趣与热情,不论是在小组内摆卡片、三人互助的“照相”游戏,还是涂色搭配,同学们其实都是兴趣盎然。当他们自己解决一个个问题后,当发现自己的解答是正确时,同学们都会情不自禁鼓掌、欢呼。这种场面使我真正感到学生才是课堂学习的主人,教师是学生活动的组织者、引导者和参与者。为了充分发挥学生学习的主体性,照顾不同层次的学生,教师必须在课下花力气、动脑筋、设计既能符合学生年龄特征,又能符合课标要求的课堂预设,在课堂上也要适当的语言、辅助教学工具,调动学生学习的积极性,让学生在玩中学、在学中玩,获得成功的喜悦。
第一、学生思维层次的渐进深入思辨过程,实现了“广度”与“深度”的挖掘。第二、整堂课以生为本,降低了对话的重心,在亲历中积累“活动经验”。
第三、不足的是学生积极性还没有完全发辉出来,只能在以后的学习中引导学生从不同角度进行探究,进一步发展学生的符号意识。
《数学广角──》教学设计7
一、教学内容:
人教版实验教材三年级下册108页及练习二十四1、2题
二、教学目标:
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。
2、使学生解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
三、教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的实际问题。
四、教学过程:
一、创设情境,导入新课
1、脑筋急转弯:有两个妈妈和两个女儿一同去看电影,却只买三张票,这是怎么回事呢?【课件演示】
2、同学们真棒!很快就帮老师解决了这个难题,其实在我们的生活中还有很多这样有趣的问题,今天老师就带大家到数学广角去感受一下这样的重叠问题。(板书课题)
3、同学们都有许多兴趣爱好,有的同学喜欢看书特别是脑筋急转弯;有的同学喜欢画画;谁来告诉老师你喜欢干什么?可三(2)班的同学喜欢参加语文和数学课外小组,老师对此做了个调查,【课件出示】请看统计表:
(1)你能从统计表上读到哪些数学信息?
(2)总人数:质疑:噢,你能说说你是怎么算的吗?
4、同学们同意吗?老师不同意这些都是第一小组的同学我知道他们14人而不是17?一起数一数,问题出在哪儿呢?(有些人好像算了两次)是不是这样呢?那么有什么好办法来帮助我们解决这个问题啊?同桌之间商量商量。
二、自主探索、学习新知
1、分类再数一数;可把两种都喜欢的分出来。【课件演示画圈】
2、那我们就一起来分一分,老师这里有两个椭圆形的圈一个是红色的表示语文小组,一个是蓝色的表示数学小组,请同学们把名单填入相应的圈中。
(1)学生独自完成。
(2)学生汇报。【课件演示】
3、现在谁来说说红色圈内表示什么?蓝色的圈内表示的是什么?那么两样都参加的同学我们分出来了吗?谁还有更好的办法?小组内的同学互相商量商量。
4、汇报:教师完成板书交集图
5、师:红色圈内表示什么?蓝色圈内表示什么?月亮状的红色圈表示什么?月亮状蓝色圈内表示什么?红色和蓝色圈相交的地方表示什么?【课件演示】
6、那现在你们会列式计算一共有几个人了吗?写在课堂练习本上。学生列式计算,师巡视。
7、学生汇报,教师板书(鼓励学生用不同的方法列式计算)【课件演示】
8、总结:大家画圈很清楚的'发现了我们有的同学两样都参加了,大家最后的方法也特别多,从不同的角度去解决了这个问题,看来我们以后做题目可要多思考一下,不能像我们之前那样简单的认为就只要8+9就好了。
三、巩固练习、拓展新知
1、动物运动会
同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。五一节就要到了,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?【课件出示】学生说说动物名称。老师表扬:你们的课外知识真丰富,老师都很佩服你们。
介绍比赛项目:游泳、飞行
师:小动物们可以参加什么项目呢?学生讨论、反馈。
师:原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上)
说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。
两个圆圈交叉的中间部分表示什么?【课件出示】既会飞又会游泳的
集体订正。【课件演示】
2、【课件出示】文具店
同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗?
①文具店昨天、今天批发文具的情况
②观察图,发现了什么?(两天都批发了钢笔、尺、练习本)
③两天共批发多少种货?
(1)在集合圈中表示出来。【课件演示】
(2)学生列式:5+5—3=75×2—3=75—3+2=7
说说怎么想的?
3、作业
【课件出示】在一次考试中三年级语文和数学得优的有17人,其中语文得优的有11人,数学得优的有12人,语文和数学都得优的有多少人?
四、全课小结
1、通过今天这节课的学习你学会了什么?
2、今天这节课,你觉得谁的表现较好,好在哪里?
《数学广角──》教学设计8
一、教学内容
人教版义务教育课标实验教材(四上)112的例1
二、教学目标
1、通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的意识。
2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。
3、能积极地参与数学学习活动,体会到学习数学的乐趣。
三、教学准备:
多媒体课件;教师准备3个圆片代饼;每组3个圆片;
四、教学过程
(一)、谈话导入
同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。
(二)新课
1、自主学习
(1)出示本节课的学习目标,请同学们朗读。
(2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的'前提是什么?
(3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?
(4)在小组内交流:烙三张饼最短用多少时间?
(5)小组汇报:如何烙三张饼用时最短?
第一张第二张第三张所花时间
第一次
第二次
第三次
2、探究烙饼最佳方法
(1)烙4张饼最快要分钟,烙5张要分钟,烙6张要分钟,烙7张要分钟,烙8张要分钟,烙9张要分钟,10张要分钟。
(2)你发现了什么?
(3)学生思考、观察、发现、汇报
烙的方法所花时间
3张饼
4张饼
5张饼
6张饼
7张饼
8张饼
9张饼
(三)过关检测
出示三道小题,请同学们解决,说一说解决的方法。
(四)、小节
师:这节课我们一块儿研究了烙饼问题,大家有什么收获?
小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。
《数学广角──》教学设计9
教学目标:
1、知识目标:使学生通过观察、操作、实验等活动,找出简单事物的排列规律。
2、能力目标:培养学生初步的观察、分析和推理能力及有顺序地、全面地思考问题的意识,并通过互相交流,使学生体会解决问题策略的多样性。
3、情感目标:
①使学生感受数学在现实生活中的广泛应用,进一步体会数学与日常生活的密切联系,尝试用数学的方法来解决实际生活中的问题,增强应用数学的意识,并使学生在数学活动中养成与人合作的良好习惯。
②使学生在探索规律活动中获得成功的体验,增强对数学学习的兴趣和信心。
教学重点:找出简单排列与组合的规划,并能解答简单的排列与组合问题。
教学难点:简单区分排列与组合的异同。
教学准备:数字卡片、、衣服图片、多媒体课件
教学过程:
一、激趣导入
师:同学们,今天老师要带你们到一个有趣的地方去玩,想去吗?
板书:数学广角
想去的话,要通过老师的考核才能去的。
猜一猜:我的年龄是由数字3和5组成的两位数。
学生猜测并说明理由。
二、探究学习
1、3个数字可以摆出多少个不同的两位数?
课件出示:猜一猜,我家座机号码是0713-62147()()
先让学生猜一猜。
师:你们这样猜要猜到什么时候啊?这样吧,老师再给你提供一些信息:
剩下两个数字是由1、3、8三个数字中的两个。
(1)摆一摆
用手中的数字卡片摆一摆,共有几种可能?
老师给同学们准备了三张数字卡片,请你们动手摆一摆,同桌合作,一个人摆数,一个人记录。同学们尝试拼摆,并且将探究结果写出来。
教师巡视,留意学生的几种答案:有序的(先确定十位的,先确定个位的)、无序的、有遗漏的、有重复的。
(2)说一说
请几名学生(有代表性的)汇报。呈现在黑板
师:哪些是对的?你喜欢哪一种?为什么?
(如果学生还是说不出,教师可以引导学生观察有序的一种,1在什么位,1在十位的两位数能摆几个,师可用卡片同时演示;除了1还有哪些数可以在十位,他们分别又有几个两位数?像这位同学就是想到先确定十位。那么这位同学又是先确定什么的呢?或问除了先确定十位,还有其他方法吗?)
这样先确定十位或个位的方法好在哪里?(板书不重复、不遗漏)
(3)猜数
师:范围越来越小了,再给你些信息
课件再给出信息:这两个数的'和为9,个位不是8。
您现在正在阅读的《数学广角——简单的排列组合》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《数学广角——简单的排列组合》教学设计2、组合
(1)恭喜你们,猜对了,你们考核过关!来,同桌互相握手祝贺一下。
师:同桌2人互相握手几次?演示两人握手,可以说我和你握手,也可以说你和我握手,但算握手的次数的话,算几次?
这里也有三位小朋友在握手,她们是怎么握的?出示:每两人握手一次,三人共要握几次?
要说清楚握了几次,怎么握的,他们没名字怎么说得清楚?你觉得刚才说的方法麻烦不麻烦?怎样表示才能又清楚又简洁?
对啊,我们数学有自己的语言,可以用符号、图形来表示,更快更清晰。(师标上1、2、3)
(2)想一想,写一写
(3)为什么三个数排成6个两位数,握手只有三次?(课件出示)
师小结:生活中很多事情需要我们有序地思考,有些与顺序有关,有些与顺序无关,比如搭配衣服。
三、巩固提升
1、搭配衣服
该出发了,老师想打扮得漂亮些。这里有二件上衣和二条裤子,你能帮老师选一套衣服吗?
该怎么搭配呢?有几种不同的搭配方案?
师:你们摆出了几种不同的搭配方法?是怎么想的?
请生上台展示。
师:现在老师提出更高的要求,如果老师要你们把刚才的想法用连线的办法表示出来,你们会吗?
生在练习本上连线。
2、照相排队
小丽、小芳、小美三人想站成一排拍照留念,她们有几种站法?
生上台演示。得出一共有6种不同的站法。
师:有没有更简便的方法展示她们三人的站法?用你自己喜欢的方式试试吧。(可以是文字,符号,数字等)
4、路线
课件出示:从数学广角回到家中有几条路可走?
你会选择那条路呢?
学生讨论,汇报。
5、电话号码
师:在数学广角玩的开心吗?记得有什么开心的事要打电话让老师也听听。
课件出示:老师的手机号码:18942167()()()
最后三个数字是由1、6、8组成的,猜一猜,老师的手机号码可能是多少呢?
四、拓展延伸
师:今天我们在数学广角里玩,你有什么收获?
生自由发言
师:老师课后留了一个小问题,请同学们讨论好之后告诉我。
课件:09里面是不是任意三个不同的一位数字,都能排成6个两位数呢?
《数学广角──》教学设计10
教学目标:
1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。
2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。
3.感悟构建数学模型是解决实际问题的重要方法之一。
教学重点:
让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学准备:多媒体课件、答题卡。
课前准备:
首先让我们伴随着欢快的音乐来学做一节手操,好吗?
教学过程:
一、初步感知间隔的含义
1.导入:刚才,在做手操的过程中,我发现同学们的小手特灵活,哎,你们知道吗?在咱们的小手中,还藏着数学知识呢?想了解一下吗?
请你们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?
2.其实,这样的数学问题,在我们的生活中,随处可见。你们看,这是同学们利用课余正在彩排节目呢?数一数,一共有几个小朋友,每2个小朋友之间牵着一根彩带,用了几根彩带,把一根彩带看成一个间隔,那6个小朋友之间是几个间隔?
过渡语:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量,瞧......
3.再次感知,找到规律。这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。
那么8棵树、9棵树之间又有多少个间隔呢?
你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!
谁来汇报一下?
边板书边说:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。
(停顿)那你们想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?
那20棵树呢?
看来,告诉你们植树的棵数,让你们说出间隔数已经难不倒大家了,接下来,如果一排树之间有22个间隔,你知道有多少棵树吗?
那30棵呢?(2人说)
像这样的例子,还可以举出很多、很多......
仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和伙伴们互相交流一下)。
反馈:谁来说说你的发现?评价:哦,这是你的发现......你还能用一个算式来概括。
边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。
小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角,运用这些规律来解决生活中的实际问题吧!
二、新授:
例1,同学们自由地小声地把题目读一读。
1.从题目你们知道了什么?(说一说)
2.题目中每隔5米栽一棵是什么意思?
3.题目中有什么地方要提醒大家的吗?(两端要栽)
4.一共需要多少棵树苗?你能自己想办法找到问题的答案吗?有困难的同学还可以借助线段图画一画。
5.交流。
6.反馈。
(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?
(2)学生分别说想法。
(3)听了他们说的,你们想对他们说些什么?
刚才,这两位同学画线段图和找到了问题的答案,列算式的方法解决了这个问题。他们都是很善于动脑筋的。
三、联系实际、拓展应用
1.基本练习:
师:近几年南昌市容有了巨大的变化,随着一个个休闲广场的建立,一条条街道的逐步亮化,南昌市已成为一座具有内涵与魅力的花园城市。最近,我了解到有关胜利路步行街有这样一些信息。
那同学们能根据题中信息解决这个问题吗?第二步为什么要加1?
师:刚才这道题同学们解答得很顺利。
师:现在把这道题做了一些改变,看看你们是不是还能很顺利的解答?
师问:第一步求到的是什么?
师:虽然邓老师对这道题做了一些改变,但是还是没有难倒同学们,那刚才在做这两题的时候,同学们有没有发现,这两题解题思路有什么不同呢?(同学们可以先思考再讨论)。
咱们班的同学们不仅会解答,而且还能比较它们的不同,的确这两道题都运用了今天我们发现的.这些规律,第一题是根据总长找到间隔数,再利用间隔数求出路灯的盏数,而第二题是根据路灯的盏数找到间隔数,再利用间隔数求出总长,它们的关键都是要先找到间隔数,正因为它们问题不同,所以解题思路也不同,以后大家在解决这类问题时可要注意审题哟!
2.变式练习:
师:20xx年最受关注的两个人物,你们知道是谁?他们就是航天英雄聂海胜和费俊龙,神六号的成功发射,让人们欢心鼓舞,作为一名中国人也为之自豪。你们知道吗,宇航员叔叔他们是每2小时(师读题)。
听了这3位同学的想法,你们会支持谁?说说理由!
3.综合练习。
师:中国的体育界也有一位英雄,猜猜他是谁?此时此刻让我们一起重温一下那精彩的瞬间,再一次为他助威、呐喊!根据信息,学生讨论,借助计算器算出刘翔一共跑了多少米?
四、总结:通过这节课的学习,你们有什么收获?
今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)那植树问题只在植树当中才有吗?学生说一说,植树只是其中的一个典型,像......等现象中都含有植树问题。
今天我们学习的植树问题仅仅是两端都栽时的情况。在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形的植树问题。
围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:3×3格、4×4格、5×5格方格纸、围棋子若干粒、4×4格条形吹塑纸贴在地下。
课前准备:课桌围成“回”字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,黑白两对手,有眼看不见,无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
3×2+2=82×4=8
3×3-1=83×4-4=8直接点数。
教师表扬学生的创新摆法,并奖励“智慧星”。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当“小老师”,其余学生当“围棋子”,请小老师邀请“围棋子”按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身“经历”的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数
最外层总数
3
4
5
6
...
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数×边数=最外层的总数
(3)学生根据规律,独立完成例3。
四、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题。
[设计意图:充分相信学生,放手让学生分析问题、解决问题,以学生为主归纳问题;教师在关键之处疏通点拨,引导学生加深理解,做到以学生为主体。]
3.请你参加:
12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?(在教室内围一围。)
4.请你思考:(课件出示同学开联欢会时的欢乐情景。)
“六一”儿童节即将来临,四<1>班同学准备开联欢会。大家围坐在一起,如果每边做14人,(如下图),这个班一共有多少个同学?每边都有8张课桌,一共要多少张课桌?
5.请你设计:(课件出示美丽的校园情景。)
学校为了庆祝“六一”儿童节,改变校园环境,想全校范围内征集校园花坛设计方案。有以下三种,请每组同学选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?再动手画一画,展示在黑板上,看哪一组做得又好又快!
[设计意图:整个练习从现实生活中出发提出数学问题,让学生在游戏中,在具体情境中充分动口、动手、动脑,培养了学生的自主学习能力、合作意识和科学探究精神。]
《数学广角──》教学设计11
一、教学内容
抽屉原理。
二、教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
三、具体编排
1.例1及“做一做”。
例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。
教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
“做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。
2.例2及“做一做”。
本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。
教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。
“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。
3.例3。
例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。
教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的'“抽屉原理”进行反向推理。
四、教学建议
1.应让学生初步经历“数学证明”的过程。
在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2.应有意识地培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。
3.要适当把握教学要求。
“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
五年级数学上册同步单元试卷:第七单元数学广角(4)
五年级数学上册同步单元试卷:第七单元数学广角(4)
五年级数学上册同步单元试卷:第七单元数学广角(1)
五年级数学上册同步单元试卷:第七单元数学广角(1)
五年级数学上册同步单元试卷:第七单元数学广角(2)
五年级数学上册同步单元试卷:第七单元数学广角(2)
五年级数学上册同步单元试卷:第七单元数学广角(3)
五年级数学上册同步单元试卷:第七单元数学广角(3)
苏教版六年级数学——第十单元第五课时应用广角
教学内容:第119页的应用广角,第27~31题,及自我评价
教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。
2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。
教学过程:
一、应用广角
1、问:你在生活中发现过哪些数学问题吗?
你能运用所学的数学知识和方法解决这些问题吗?
2、完成第27题
(1)课前预先布置学生按要求去调查
(2)课上,让学生分组汇报调查得到的数据
学生根据数据计算,完成填空
(3)分析:从这些信息中,你们知道了什么?
用百分数或比表示相关的信息有什么好处?
3、完成第28题
收集一些用百分数或比表示的信息,在小组里交流
4、完成第29题
根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。
全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。
5、完成第30题
(1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板
读题,思考:剪去的每个正方形的边长应该是几厘米?
(2)学生动手剪一剪、折一折
找一找:这个纸盒的长、宽、高各是多少?
(3)算一算:
制作这个纸盒用了多少硬纸板?
这个纸盒的容积是多少立方厘米?
6、完成第31题
学生先独立思考,再全班交流
二、自我评价
1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。
2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。
3、在学习中,你觉得自己又有了哪些收获和进步?还有什么地方也有所欠缺,需要改进和努力的?
《数学广角──》教学设计12
教学内容:
人教版义务教育课程标准实验教科书小学数学二年级上册第八单元数学广角—搭配(一)
教学目标:
知识与技能:使学生通过观察、猜测、操作、比较等活动,找出最简单的事物的排列数和组合数。
过程与方法:经历探索简单事物排列与组合规律的过程,初步理解简单事物排列与组合的不同,初步感悟简单的排列、组合的数学思想方法。
情感态度与价值观:培养学生有顺序地全面思考问题的意识和感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
让学生初步感悟简单的排列、组合的数学思想方法
教学准备:
每人4、5、6数字卡片各一张
教学过程:
一、创设情境,导入新课
师:同学们,你们好!今天非常高兴来到神灵寺小学和大家共同上一节课。首先自我介绍一下:我是来自于西安市莲湖区机场小学的李老师,大家猜猜看我的年龄,学生自由说。
师:我的年龄是用数字3和4组成的两位数,我有可能是多少岁?(34岁或43岁)
二、小组合作,探究新知
1、感知排列:
我在机场小学带的二年级的两个班,这两个班的人数恰好一样多,人数是由4、5、6其中的'两个数字组成的两位数,每个两位数的十位和个位数字不能一样,想想一共有多少种可能性?
1)引导学生用数字卡片摆一摆,摆出的结果写在练习纸上。(摆一个写一个)
2)教师巡视,收集信息。
3)展示反馈:
预设:
方法一:无序的。
方法二:先写出4在十位上的有45、46;再写出5在十位上的有54、56;再写出6在十位上的有64、65。
方法三:交换数字的位置,用数字4、5能写出45、54;用数字4、6能写出46、64;用数字5、6能写出56、65。
4)引导学生评价每一种方法。
师:今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。
同学们,现在自己梳理一下自己的思路,把方法记录下来。
【设计意图]让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。】
2、感知组合:
1)师:我们的学生都非常喜欢学校,因为学校开展了丰富的社团活动,有足球、合唱、美术,如果每人参加其中的两项,一共能搭配出多少种组合?
2)引导学生在练习纸上尝试写出搭配结果。
3)师:有几种搭配方案?生答(预设:6种、3种等)
4)师生共同演示分析,得出正确结果:3种。(足球+合唱跟合唱+美术属于一种)
5)小结:我们在解决这样的搭配问题时也要按照一定的顺序,这样就不会重复也不会遗漏。
【设计意图:引导学生思考,进而梳理知识,总结归纳】
3、感知排列和组合的不同:
1)师:老师现在有一个疑问,排数字卡片时用3个数字可以摆出6个不同的数,3个社团搭配不同的组合却只有3种,同样是3个元素,为什么搭配的结果会不一样呢?
2)学生思考、小组讨论。
师生共同总结:摆数与顺序有关,搭配社团活动与顺序无关,交换位置没有意义。
【设计意图】借助排列数的活动经验,让学生亲身经历画一画、写一写、议一议、比一比等活动的过程,感受有序思考的价值,同时在方法的交流中体会到排列数和组合数的相同之处和不同之处,培养学生的动手操作能力、合作意识和交流能力。】
三、巩固练习升华体验
1、握手问题:
1)师:同学们的表现真不错,老师很想跟你们握一下手。(教师不自主的一边走一边伸手和同学握手)。刚才老师和几个同学握了手(3个):如果我们四个人每两个人握一次,一共要握多少次呢?
2)师:小组为单位,看看每两个人握一次手,四个人一共要握手多少次?(学生活动)然后把结果记录下来。
3)师生共评、总结。
2、照相问题:
1)师:上完课之后,我要跟何校长、你们的班主任合影留念,我们三个人之间能照几张不同的三人照呢?
生思考
2)师:所谓不同是什么不同?
生:站的位置不同。
3)师引导学生画图排列出结果。
【设计意图:通过解决不同类型的搭配问题,让学生进一步巩固排列和组合问题的解决策略和方法,感受有序思考问题的价值,让学生亲身体会到数学知识和现实生活的密切联系。】
四、全课小结,感悟内化
谁能说说这节课你学到了什么?你的感受是什么?
《数学广角──》教学设计13
设计理念:
笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。
在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。
教学目标:
1、知识与能力目标:
通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。
2、过程与方法目标:
使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、情感态度与价值观目标:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重点:
理解“两端都不种”的植树问题的规律
教学难点:
应用“两端不种”的植树方法去解决生活中类似的问题
教学过程:
一、创设情境,发现问题
同学们学过植树的知识吗?请大家来帮忙解决下面这个问题
房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?
误区:60÷10=6(个)
6+1=7(棵)
两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题
(设计意图:矛盾的`冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)
二、化繁为简,经历猜测、验证的过程探索规律
师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别
讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样
师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?
猜测:棵数=间隔数+1
是不是这样呢,我们来验证一下(植树)
两端不种
棵数=间隔数+1
(设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)
二、深入学习应用“两端不栽”的规律
1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?
2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)
②师:同学们讨论一下解决这道题要注意什么?
课件闪烁:将“两旁栽树”,“两端不用栽”
学生展示:60÷3=20(个)
20-1=19(棵)
19×2=38(棵)
答:一共要栽38棵树。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
(设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)
三、回归生活,实际应用
1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?
20÷4=5(个)
5—1=4(面)(面数=间隔数-1)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?
4-1=3(层)(层数=楼数-1)
3×26=78(级)
(问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)
3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)
5-1=4(次)(次数=段数-1)
4×8=32(分)
(设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)
四、全课总结
通过今天的学习,你有哪些收获?
(设计意图:让学生回顾本节知识达到及时巩固的作用)
五、板书设计
植树问题(两端不种)
棵数=间隔数生活中
间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、
学生展示:60÷3=20(个)上楼:层数=楼数-1
20-1=19(棵)锯树木:次数=段数-1
19×2=38(棵)
答:一共要栽38棵树。
(设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)
《数学广角──》教学设计14
教学内容:
三年级数学上册第九单元《数学广角》教学目标:
1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
2.能力目标:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
3.情感目标:培养学生初步养成善于观察、善于思考的学习习惯。教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。教具学具准备:
课件教学流程:
一、创设情境生成问题
1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个妈妈和两个女儿去看电影,每人买一张票,却只买了三张票就顺利进入了电影院,为什么?【姥姥、妈妈、女儿】
2、两个妈妈【板书:2】,两个女儿【板书:2】,却只买了3张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【妈妈的身份最特殊,有两个身份,既是姥姥的女儿又是女儿的妈妈。】【妈妈有两个身份,重复算了一次,板书:2+2-1=3】
3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现1得最好?
二、探索交流解决问题
为迎接我校20xx年校园科技艺术节的召开,学校将相继举行科技小制作和科技绘画比赛。要求每班5名同学参加科技小制作、6名同学参加科技绘画比赛。
这是三(1)班参加科技小制作和绘画比赛的学生名单。
你能从统计表中获得怎样的数学信息?你能提出怎样的.数学问题?参加这两项比赛的共有多少人呢?谁来说一说?生:小制作的有5人,绘画的有6人,一共有11人。师:大家还有不同意见的吗?
请大家拿出纸和笔,在纸上写一写、画一画,看怎样方便我们数人数?然后小组交流。
用实物投影汇报或典型做法的同学去黑板板演。(连线、画图法)师:你更喜欢哪种方法?为什么?
生:集合图能使别人一看就知道参加小制作比赛的有哪些同学,参加绘画比赛的有哪些同学,两项比赛都参加的有哪些同学。在数学上,我们把参加小制作比赛的学生看作一个整体,叫做一个集合。(板书:集合)把参加绘画比赛的学生看作一个整体,也是一个集合。在100多年前的英国,有一个名叫韦恩的逻辑学家,就用一个集合图很方便的解决了我们今天遇到的这个问题。(课件出示)因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。我们一起来分析一下。
左边的圈表示的是什么?(参加小制作比赛的有5人。)右边的圈表示的是什么?(参加绘画比赛的有6人。)中间两个圈相交的部2分呢?【既参加小制作比赛,又参加绘画比赛的有2人。】去掉相交部分的左边的圈表示什么?(只参加小制作比赛的有3人。)去掉相交部分的右边的圈表示什么?(只参加绘画比赛的有4人。)
9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。三(1)班参加小制作的和参加绘画的到底一共有多少人?该怎样列式计算呢?(也可以只强化第一种方法)①算法1:5+6-2=9(人)
你是怎么想的?【先把参加制作比赛的和参加绘画比赛的加起来。算式是5+6=11,然后再用11减去2个重复的,11-2=9】②算法2:3+4+2=9(人)
请你解释一下。【3是只参加小制作比赛的,4是只参加绘画比赛的,2是两项比赛都参加的,即重复的】
③算法3:5+4=9(人)【参加小制作比赛的5人,加上只参加绘画比赛的4人】
④算法4:6+3=9(人)【参加绘画比赛的6人,加上只参加小制作比赛的3人】
刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?
三、巩固应用内化提高
1、同学们累了吧,我们轻松一下,老师带领大家去动物世界看看吧,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?
只会飞的有哪些?【②④⑧⑩】只会游泳的有哪些?【①⑤⑥⑨】
③天鹅、大雁放哪儿?【放中间】为什么放中间?【它既会飞又3会游泳】同意吗?
如果又来了一只小狗,应该把它放在哪呢?【因为它既不会飞也不会游泳】
所以不能放在圈里,只能把它放在哪里?【圈外】同学们真了不起,没有被这样的问题迷惑住!
2、每班5名同学参加科技小制作、6名同学参加科技绘画比赛,其他班级可能会有多少人参加呢?
3、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。
(1)既参加数学小组又参加语文小组的有几人?
(2)只参加数学小组的有几人?
(3)只参加语文小组的有几人?
四、回顾整理反思提升
通过这节课的学习,你有什么收获?
《数学广角──》教学设计15
一、教学目标
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断
“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的.办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
五、教学过程
(一)巧用对比,初悟“重复”
1.观察与比较(课件出示图片)
第一组;父与子
(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
第二组:小棒拼三角形
(1)3根小棒拼成的一个三角形。
(2)提出问题:摆2个这样的三角形需要几根小棒?
预设:可能会说6根,表示3+3=6(根)
还可能会说5根,表示3+3-1=5(根)
图片出示有重复情况的2个三角形。
教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?
2.思考与发现
(课件出示)把2组有重复情况的图片放在一起。
(1)提问:你发现了什么?
学生思考,回答想法。
教师要引导学生突出:
(1)“重叠”或“重复”一词;
(2)列式中“减1”的意义;
(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;
(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。
教师揭示课题,今天我们研究有重复现象的数学问题。
【设计意图】设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。
(二)善用例题,引入新课
1.情境引入(课件出示“通知”)
(1)了解信息,提出问题
你认为三(1)班要选拔多少名同学参加这两项比赛?
让学生尝试回答参加比赛的总人数。
(2)出示名单,引发认知冲突
课件出示三(1)班参赛学生的名单的统计表,让学生观察。
2.观察名单,验证人数,初悟“重复”
问题:仔细观察过这份报名表,你有什么发现?
让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。
【设计意图】根据学生熟悉情境引入,通过具体情况引发矛盾冲突,提出问题,“在参加人数数据较多的情况下,发现重复的人数”,找准教学的起点,调动学生探索的积极性。
(三)合作探究,体验过程
1.策略分析
谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?
让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。
借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。
【设计意图】通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。
2.探究方法
(1)选出几种不同作品展示,理解分析不同整理方法。
预设:方法一
方法二:
方法三:
(2)交流不同思想,比较各自的优缺点。
(3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。
课件出示:
(4)介绍韦恩,拓宽视野
课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的,维恩图常用来研究表示数学中的“集合问题”,也叫集合图。
【设计意图】让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。
3.辩论感悟
谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点?
让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。
4.据图列式,运用集合图
谈话:你了解图中各部分的意义吗?
(1)课件演示各部分,让学生比较正确表述各部分的意义。
(2)利用数据,列式计算出该班参加比赛的人数。
指名学生计算,反馈交流,理解各算式的意义。
可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)
【设计意图】让学生借助直观图,理解集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。
5.变式练习,内化集合思想课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。
教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。
请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。
师生小结。【设计意图】变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。
(四)巩固应用,建构模型
1.基础性练习
(1)完成教材上105页“做一做”第1题.
指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义
2.趣味性练习
3.拓展性练习
估计三(3)班可能有多少同学参加比赛。
讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?
判断:参赛的同学最多有17人。()参赛的同学最少有8人。()
小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。
【设计意图】设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。
(五)全课总结,呼应课题
师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。